Cramér—von Mises distance: Probabilistic interpretation, confidence intervals, and neighborhood-of-model validation

Norbert Henze

Karlsruhe Institute of Technology, Karlsruhe, Germany

(joint work with Ludwig Baringhaus, University of Hannover, Germany)

Abstract: We give a probabilistic interpretation of the Cramér–von Mises distance

$$\Delta(F, F_0) = \int (F - F_0)^2 \mathrm{d}F_0$$

between continuous distribution functions F and F_0 . If F is unknown, we construct an asymptotic confidence interval for $\Delta(F, F_0)$ based on a random sample from F. Moreover, for given F_0 and some value $\Delta_0 > 0$, we propose an asymptotic equivalence test of the hypothesis that $\Delta(F, F_0) \geq \Delta_0$ against the alternative $\Delta(F, F_0) < \Delta_0$. If such a 'neighborhood-of- F_0 validation test', carried out at a small asymptotic level, rejects the hypothesis, there is evidence that F is within a distance Δ_0 of F_0 . As a neighborhood-of-exponentiality test shows, the method may be extended to the case that H_0 is composite.